Search

Interactions between bacterial and phage communities in natural environments - Nature.com

datangep.blogspot.com

Abstract

We commonly acknowledge that bacterial viruses (phages) shape the composition and evolution of bacterial communities in nature and therefore have important roles in ecosystem functioning. This view stems from studies in the 1990s to the first decade of the twenty-first century that revealed high viral abundance, high viral diversity and virus-induced microbial death in aquatic ecosystems as well as an association between collapses in bacterial density and peaks in phage abundance. The recent surge in metagenomic analyses has provided deeper insight into the abundance, genomic diversity and spatio-temporal dynamics of phages in a wide variety of ecosystems, ranging from deep oceans to soil and the mammalian digestive tract. However, the causes and consequences of variations in phage community compositions remain poorly understood. In this Review, we explore current knowledge of the composition and evolution of phage communities, as well as their roles in controlling the population and evolutionary dynamics of bacterial communities. We discuss the need for greater ecological realism in laboratory studies to capture the complexity of microbial communities that thrive in natural environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Canonical phage infection cycles.
Fig. 2: Consequences of co-infection for phage epidemiology and evolution.
Fig. 3: Phage-mediated evolution of bacterial communities.
Fig. 4: Short-term and long-term consequences of phage–bacterium coevolution.

References

  1. 1.

    Hendrix, R. W., Smith, M. C. M., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Simmonds, P. et al. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Suttle, C. A. Viruses: unlocking the greatest biodiversity on Earth. Genome 56, 542–544 (2013).

    PubMed  Article  Google Scholar 

  4. 4.

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Wigington, C. H. et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1, 15024 (2016).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Mushegian, A. R. Are there 10 31 virus particles on Earth, or more, or fewer? J. Bacteriol. https://doi.org/10.1128/JB.00052-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Graham, E. B. et al. Untapped viral diversity in global soil metagenomes. Preprint at bioRxiv https://doi.org/10.1101/583997 (2019).

    Article  Google Scholar 

  9. 9.

    Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18, 125–138 (2020).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Hoyles, L. et al. Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res. Microbiol. 165, 803–812 (2014).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Santiago-Rodriguez, T. M. et al. Natural mummification of the human gut preserves bacteriophage DNA. FEMS Microbiol. Lett. 363, fnv219 (2016).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Tara Oceans Coordinators et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).

    Article  CAS  Google Scholar 

  14. 14.

    Hatfull, G. F. Bacteriophage genomics. Curr. Opin. Microbiol. 11, 447–453 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Suttle, C. A. The significance of viruses to mortality in aquatic microbial communities. Microb. Ecol. 28, 237–243 (1994).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Roux, S. et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes. Nat. Microbiol. 4, 1895–1906 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Roux, S., Krupovic, M., Poulet, A., Debroas, D. & Enault, F. Evolution and diversity of the Microviridae viral family through a collection of 81 new complete genomes assembled from virome reads. PLoS ONE 7, e40418 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Krupovic, M. & Forterre, P. Microviridae goes temperate: microvirus-related proviruses reside in the genomes of Bacteroidetes. PLoS ONE 6, e19893 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Quaiser, A. et al. Diversity and comparative genomics of Microviridae in Sphagnum- dominated peatlands. Front. Microbiol. 6, 375 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Krishnamurthy, S. R. & Wang, D. Origins and challenges of viral dark matter. Virus Res. 239, 136–142 (2017).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Callanan, J. et al. Biases in viral metagenomics-based detection, cataloguing and quantification of bacteriophage genomes in human faeces, a review. Microorganisms 9, 524 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Krishnamurthy, S. R., Janowski, A. B., Zhao, G., Barouch, D. & Wang, D. Hyperexpansion of RNA bacteriophage diversity. PLoS Biol. 14, e1002409 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Callanan, J. et al. Expansion of known ssRNA phage genomes: from tens to over a thousand. Sci. Adv. 6, eaay5981 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Correa, A. M. S. et al. Revisiting the rules of life for viruses of microorganisms. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00530-x (2021).

    Article  PubMed  Google Scholar 

  29. 29.

    Secor, P. R. et al. Filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe 18, 549–559 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Berngruber, T. W., Froissart, R., Choisy, M. & Gandon, S. Evolution of virulence in emerging epidemics. PLoS Pathog. 9, e1003209 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Berngruber, T. W., Lion, S. & Gandon, S. Spatial structure, transmission modes and the evolution of viral exploitation strategies. PLoS Pathog. 11, e1004810 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Liang, X. et al. Lysogenic reproductive strategies of viral communities vary with soil depth and are correlated with bacterial diversity. Soil. Biol. Biochem. 144, 107767 (2020).

    CAS  Article  Google Scholar 

  35. 35.

    Knowles, B. et al. Variability and host density independence in inductions-based estimates of environmental lysogeny. Nat. Microbiol. 2, 17064 (2017).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Kim, M.-S. & Bae, J.-W. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J. 12, 1127–1141 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Mathieu, A. et al. Virulent coliphages in 1-year-old children fecal samples are fewer, but more infectious than temperate coliphages. Nat. Commun. 11, 378 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Touchon, M., Bernheim, A. & Rocha, E. P. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 10, 2744–2754 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Li, G., Cortez, M. H., Dushoff, J. & Weitz, J. S. When to be temperate: on the fitness benefits of lysis vs. lysogeny. Preprint at biorxiv https://doi.org/10.1101/709758 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Berngruber, T. W., Weissing, F. J. & Gandon, S. Inhibition of superinfection and the evolution of viral latency. J. Virol. 84, 10200–10208 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Kieft, K. & Anantharaman, K. Deciphering active prophages from metagenomes. Preprint at biorxiv https://www.biorxiv.org/content/10.1101/2021.01.29.428894 (2021).

  42. 42.

    Onodera, S. et al. Construction of a transducing virus from double-stranded RNA bacteriophage phi6: establishment of carrier states in host cells. J. Virol. 66, 190–196 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Pourcel, C., Midoux, C., Vergnaud, G. & Latino, L. A carrier state is established in Pseudomonas aeruginosa by phage LeviOr01, a newly isolated ssRNA levivirus. J. Gen. Virol. 98, 2181–2189 (2017).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Ripp, S. & Miller, R. V. The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiology 143, 2065–2070 (1997).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Luo, E., Eppley, J. M., Romano, A. E., Mende, D. R. & DeLong, E. F. Double-stranded DNA virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME J. 14, 1304–1315 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Luo, E., Aylward, F. O., Mende, D. R. & DeLong, E. F. Bacteriophage distributions and temporal variability in the ocean’s interior. mBio 8, e01903 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Trubl, G. et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3, e00076–18 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Edwards, R. A. et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 4, 1727–1736 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541 (2019).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Bellas, C. M., Schroeder, D. C., Edwards, A., Barker, G. & Anesio, A. M. Flexible genes establish widespread bacteriophage pan-genomes in cryoconite hole ecosystems. Nat. Commun. 11, 4403 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Aylward, F. O. et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc. Natl Acad. Sci. USA 114, 11446–11451 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Marston, M. F. & Martiny, J. B. H. Genomic diversification of marine cyanophages into stable ecotypes. Environ. Microbiol. 18, 4240–4253 (2016).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Ballaud, F. et al. Dynamics of viral abundance and diversity in a Sphagnum-dominated peatland: temporal fluctuations prevail over habitat. Front. Microbiol. 6, 1494 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Hevroni, G., Flores-Uribe, J., BĂ©jĂ , O. & Philosof, A. Seasonal and diel patterns of abundance and activity of viruses in the Red Sea. Proc. Natl Acad. Sci. USA 117, 29738–29747 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Arkhipova, K. et al. Temporal dynamics of uncultured viruses: a new dimension in viral diversity. ISME J. 12, 199–211 (2018).

    PubMed  Article  Google Scholar 

  58. 58.

    Nilsson, E. et al. Genomic and seasonal variations among aquatic phages infecting the baltic sea gammaproteobacterium Rheinheimera sp. strain BAL341. Appl. Environ. Microbiol. 85, e01003–e01019 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Dahlman, S., Avellaneda-Franco, L. & Barr, J. J. Phages to shape the gut microbiota? Curr. Opin. Biotech. 68, 89–95 (2021).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Shkoporov, A. N. et al. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat. Commun. 9, 4781 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Manrique, P. et al. Healthy human gut phageome. Proc. Natl Acad. Sci. USA 113, 10400–10405 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    de Jonge, P. A., Nobrega, F. L., Brouns, S. J. J. & Dutilh, B. E. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 27, 51–63 (2019).

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Cazares, D. et al. A novel group of promiscuous podophages infecting diverse gammaproteobacteria from river communities exhibits dynamic intergenus host adaptation. mSystems 6, e00773–20 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Heineman, R. H., Springman, R. & Bull, J. J. Optimal foraging by bacteriophages through host avoidance. Am. Naturalist 171, 149–157 (2008).

    Article  Google Scholar 

  67. 67.

    Meyer, J. R. et al. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335, 428–432 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Meyer, J. R. et al. Ecological speciation of bacteriophage lambda in allopatry and sympatry. Science 354, 1301–1304 (2016).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Holtzman, T. et al. A continuous evolution system for contracting the host range of bacteriophage T7. Sci. Rep. 10, 307 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Sant, D. G., Woods, L. C., Barr, J. J. & McDonald, M. J. Host diversity slows bacteriophage adaptation by selecting generalists over specialists. Nat. Ecol. Evol. 5, 350–359 (2021).

    PubMed  Article  Google Scholar 

  71. 71.

    De Sordi, L., Khanna, V. & Debarbieux, L. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe 22, 801–808 (2017).

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Cornuault, J. K. et al. The enemy from within: a prophage of Roseburia intestinalis systematically turns lytic in the mouse gut, driving bacterial adaptation by CRISPR spacer acquisition. ISME J. 14, 771–787 (2020).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Ford, B. E. et al. Frequency and fitness consequences of bacteriophage Φ6 host range mutations. PLoS ONE 9, e113078 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74.

    Schmerer, M., Molineux, I. J. & Bull, J. J. Synergy as a rationale for phage therapy using phage cocktails. PeerJ 2, e590 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Streisinger, G. Phenotypic mixing of host range and serological specificities in bacteriophages T2 and T4. Virology 2, 388–398 (1956).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Avrani, S., Wurtzel, O., Sharon, I., Sorek, R. & Lindell, D. Genomic island variability facilitates Prochlorococcus–virus coexistence. Nature 474, 604–608 (2011).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, e08490 (2015).

    PubMed Central  Article  PubMed  Google Scholar 

  78. 78.

    DĂ­az-Muñoz, S. L. Viral coinfection is shaped by host ecology and virus–virus interactions across diverse microbial taxa and environments. Virus Evol. 3, vex011 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Joseph, S. B., Hanley, K. A., Chao, L. & Burch, C. L. Coinfection rates in φ6 bacteriophage are enhanced by virus-induced changes in host cells. Evol. Appl. 2, 24–31 (2009).

    PubMed  Article  Google Scholar 

  80. 80.

    Weitz, J. S., Mileyko, Y., Joh, R. I. & Voit, E. O. Collective decision making in bacterial viruses. Biophys. J. 95, 2673–2680 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Erez, Z. et al. Communication between viruses guides lysis-lysogeny decisions. Nature 541, 488–493 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Trinh, J. T., SzĂ©kely, T., Shao, Q., BalĂ¡zsi, G. & Zeng, L. Cell fate decisions emerge as phages cooperate or compete inside their host. Nat. Commun. 8, 14341 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Refardt, D. Within-host competition determines reproductive success of temperate bacteriophages. ISME J. 5, 1451–1460 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Griffith, J. & Kornberg, A. Mini M13 bacteriophage: circular fragments of M13 DNA are replicated and packaged during normal infections. Virology 59, 139–152 (1974).

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Lindqvist, B. H., DehĂ², G. & Calendar, R. Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol. Rev. 57, 683–702 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Borges, A. L. et al. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174, 917–925 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Landsberger, M. et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas Immunity. Cell 174, 908–916 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Bondy-Denomy, J. et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 10, 2854–2866 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Dedrick, R. M. et al. Prophage-mediated defence against viral attack and viral counter-defence. Nat. Microbiol. 2, 16251 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Turner, P. E. & Duffy, S. Evolutionary ecology of multiple phage adsorption and infection. in Bacteriophage Ecology (ed. Abedon, S. T.) 195–216 (Cambridge University Press, 2008).

  91. 91.

    Secor, P. R. & Dandekar, A. A. More than simple parasites: the sociobiology of bacteriophages and their bacterial hosts. mBio 11, e00041–20 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    DĂ­az-Muñoz, S. L., SanjuĂ¡n, R. & West, S. Sociovirology: conflict, cooperation, and communication among viruses. Cell Host Microbe 22, 437–441 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. 93.

    Meier-Kolthoff, J. P., Uchiyama, J., Yahara, H., Paez-Espino, D. & Yahara, K. Investigation of recombination-intense viral groups and their genes in the Earth’s virome. Sci. Rep. 8, 11496 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. 94.

    Mavrich, T. N. & Hatfull, G. F. Bacteriophage evolution differs by host, lifestyle and genome. Nat. Microbiol. 2, 17112 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Kupczok, A. et al. Rates of mutation and recombination in Siphoviridae phage genome evolution over three decades. Mol. Biol. Evol. 35, 1147–1159 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    de Sousa, J. A. M., Pfeifer, E., Touchon, M. & Rocha, E. P. C. Causes and consequences of bacteriophage diversification via genetic exchanges across lifestyles and bacterial taxa. Mol. Biol. Evol. 38, 2497–2512 (2021).

    Article  Google Scholar 

  97. 97.

    Eshelman, C. M. et al. Unrestricted migration favours virulent pathogens in experimental metapopulations: evolutionary genetics of a rapacious life history. Phil. Trans. R. Soc. B 365, 2503–2513 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Waller, A. S. et al. Classification and quantification of bacteriophage taxa in human gut metagenomes. ISME J. 8, 1391–1402 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Thingstad, T. F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 45, 1320–1328 (2000).

    Article  Google Scholar 

  100. 100.

    Xue, C. & Goldenfeld, N. Coevolution maintains diversity in the stochastic ‘Kill the Winner’ model. Phys. Rev. Lett. 119, 268101 (2017).

    PubMed  Article  Google Scholar 

  101. 101.

    Howard-Varona, C. et al. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. ISME J. 11, 284–295 (2017).

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Manage, P. M., Kawabata, Z. & Nakano, S. Seasonal changes in densities of cyanophage infectious to Microcystis aeruginosa in a hypereutrophic pond. Hydrobiologia 411, 211–216 (1999).

    Article  Google Scholar 

  103. 103.

    Rodriguez-Brito, B. et al. Viral and microbial community dynamics in four aquatic environments. ISME J. 4, 739–751 (2010).

    PubMed  Article  Google Scholar 

  104. 104.

    Faruque, S. M. et al. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc. Natl Acad. Sci. USA 102, 1702–1707 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Faruque, S. M. et al. Self-limiting nature of seasonal cholera epidemics: Role of host-mediated amplification of phage. Proc. Natl Acad. Sci. USA 102, 6119–6124 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Parsons, R. J., Breitbart, M., Lomas, M. W. & Carlson, C. A. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea. ISME J. 6, 273–284 (2012).

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Bacterial photosynthesis genes in a virus. Nature 424, 741–741 (2003).

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Thompson, L. R. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc. Natl Acad. Sci. USA 108, 757–764 (2011).

    Article  Google Scholar 

  110. 110.

    Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M. & Chisholm, S. W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89 (2005).

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Kieft, K. et al. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Preprint at bioRxiv https://doi.org/10.1101/2020.08.24.253096v1 (2020).

    Article  Google Scholar 

  113. 113.

    Spriewald, S. et al. Evolutionary stabilization of cooperative toxin production through a bacterium-plasmid-phage interplay. mBio 11, e00912–e00920 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    De Paepe, M. et al. Carriage of λ latent virus is costly for its bacterial host due to frequent reactivation in monoxenic mouse intestine. PLoS Genet. 12, e1005861 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  115. 115.

    FrazĂ£o, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. 116.

    Jamet, A. et al. A widespread family of polymorphic toxins encoded by temperate phages. BMC Biol. 15, 75 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. 117.

    van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, 6379 (2018).

    Article  CAS  Google Scholar 

  119. 119.

    Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Koskella, B. & Brockhurst, M. A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38, 916–931 (2014).

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Meaden, S., Paszkiewicz, K. & Koskella, B. The cost of phage resistance in a plant pathogenic bacterium is context-dependent. Evolution 69, 1321–1328 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Westra, E. R. et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr. Biol. 25, 1043–1049 (2015).

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Alseth, E. O. et al. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature 574, 549–552 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Koskella, B., Lin, D. M., Buckling, A. & Thompson, J. N. The costs of evolving resistance in heterogeneous parasite environments. Proc. Biol. Sci. 279, 1896–1903 (2012).

    PubMed  Google Scholar 

  125. 125.

    Wright, R. C. T., Friman, V.-P., Smith, M. C. M. & Brockhurst, M. A. Resistance evolution against phage combinations depends on the timing and order of exposure. mBio 10, e01652–19 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Pal, C., MaciĂ¡, M. D., Oliver, A., Schachar, I. & Buckling, A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450, 1079–1081 (2007).

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Betts, A., Gray, C., Zelek, M., MacLean, R. C. & King, K. C. High parasite diversity accelerates host adaptation and diversification. Science 360, 907–911 (2018).

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Wielgoss, S., Bergmiller, T., Bischofberger, A. M. & Hall, A. R. Adaptation to parasites and costs of parasite resistance in mutator and nonmutator bacteria. Mol. Biol. Evol. 33, 770–782 (2016).

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Chevallereau, A., Meaden, S., van Houte, S., Westra, E. R. & Rollie, C. The effect of bacterial mutation rate on the evolution of CRISPR-Cas adaptive immunity. Phil. Trans. R. Soc. B 374, 20180094 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Oliver, A., CantĂ³n, R., Campo, P., Baquero, F. & BlĂ¡zquez, J. High frequency of hypermutable pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1253 (2000).

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    GĂ³mez, P. & Buckling, A. Coevolution with phages does not influence the evolution of bacterial mutation rates in soil. ISME J. 7, 2242–2244 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  132. 132.

    Matic, I. Mutation rate heterogeneity increases odds of survival in unpredictable environments. Mol. Cell 75, 421–425 (2019).

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Doulatov, S. et al. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431, 476–481 (2004).

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Roux, S. et al. Ecology and molecular targets of hypermutation in the global microbiome. Nat. Commun. 12, 3076 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    O’Brien, S., KĂ¼mmerli, R., Paterson, S., Winstanley, C. & Brockhurst, M. A. Transposable temperate phages promote the evolution of divergent social strategies in Pseudomonas aeruginosa populations. P. Roy. Soc. B Biol. Sci. 286, 20191794 (2019).

    Google Scholar 

  136. 136.

    Davies, E. V. et al. Temperate phages both mediate and drive adaptive evolution in pathogen biofilms. Proc. Natl Acad. Sci. USA 113, 8266–8271 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Rollie, C. et al. Targeting of temperate phages drives loss of type I CRISPR–Cas systems. Nature 578, 149–153 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Obeng, N., Pratama, A. A. & van Elsas, J. D. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 24, 440–449 (2016).

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Li, D. et al. Prophage phiv142-3 enhances the colonization and resistance to environmental stresses of avian pathogenic Escherichia coli. Vet. Microbiol. 218, 70–77 (2018).

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Brouwer, S. et al. Prophage exotoxins enhance colonization fitness in epidemic scarlet fever-causing Streptococcus pyogenes. Nat. Commun. 11, 5018 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Duerkop, B. A., Clements, C. V., Rollins, D., Rodrigues, J. L. M. & Hooper, L. V. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc. Natl Acad. Sci. USA 109, 17621–17626 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Diard, M. et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355, 1211–1215 (2017).

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489–491 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Owen, S. V. et al. Prophage-encoded phage defence proteins with cognate self-immunity. Preprint at biorxiv https://doi.org/10.1101/2020.07.13.199331 (2021).

  145. 145.

    Chiang, Y. N., Penadés, J. R. & Chen, J. Genetic transduction by phages and chromosomal islands: the new and noncanonical. PLoS Pathog. 15, e1007878 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    Chen, J. et al. Genome hypermobility by lateral transduction. Science 362, 207–212 (2018).

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Haaber, J. et al. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat. Commun. 7, 13333 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Lang, A. S., Westbye, A. B. & Beatty, J. T. The distribution, evolution, and roles of gene transfer agents in prokaryotic genetic exchange. Annu. Rev. Virol. 4, 87–104 (2017).

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Calero-CĂ¡ceres, W., Ye, M. & BalcĂ¡zar, J. L. Bacteriophages as environmental reservoirs of antibiotic resistance. Trends Microbiol. 27, 570–577 (2019).

    PubMed  Article  CAS  Google Scholar 

  150. 150.

    Enault, F. et al. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 11, 237–247 (2017).

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Kenzaka, T., Tani, K. & Nasu, M. High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J. 4, 648–659 (2010).

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Kleiner, M., Bushnell, B., Sanderson, K. E., Hooper, L. V. & Duerkop, B. A. Transductomics: sequencing-based detection and analysis of transduced DNA in pure cultures and microbial communities. Microbiome 8, 1–17 (2020).

    Article  Google Scholar 

  153. 153.

    Solheim, H. T., Sekse, C., Urdahl, A. M., Wasteson, Y. & Nesse, L. L. Biofilm as an environment for dissemination of stx genes by transduction. Appl. Environ. Microbiol. 79, 896–900 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Popa, O., Landan, G. & Dagan, T. Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction. ISME J. 11, 543–554 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155.

    Touchon, M., Moura de Sousa, J. A. & Rocha, E. P. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr. Opin. Microbiol. 38, 66–73 (2017).

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    De Sordi, L., Lourenço, M. & Debarbieux, L. “I will survive”: a tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes 10, 92–99 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  157. 157.

    GĂ³mez, P. & Buckling, A. Bacteria-phage antagonistic coevolution in soil. Science 332, 106–109 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  158. 158.

    Buckling, A. & Rainey, P. B. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. Biol. Sci. 269, 931–936 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Galtier, M. et al. Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease. J. Crohns Colitis 11, 840–847 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. 160.

    Lourenço, M. et al. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe 28, 390–401 (2020).

    PubMed  Article  CAS  Google Scholar 

  161. 161.

    Koskella, B. Phage-mediated selection on microbiota of a long-lived host. Curr. Biol. 23, 1256–1260 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  162. 162.

    Laanto, E., Hoikkala, V., Ravantti, J. & Sundberg, L.-R. Long-term genomic coevolution of host-parasite interaction in the natural environment. Nat. Commun. 8, 111 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  163. 163.

    LeGault, K. N. et al. Temporal shifts in antibiotic resistance elements govern virus-pathogen conflicts. Preprint at biorxiv https://www.biorxiv.org/content/ 10.1101/2020.12.16.423150 (2020).

  164. 164.

    Makarova, K. S., Wolf, Y. I., Snir, S. & Koonin, E. V. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J. Bacteriol. 193, 6039–6056 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. 165.

    Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell 183, 1551–1561 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  166. 166.

    Bernheim, A. et al. Prokaryotic viperins produce diverse antiviral molecules. Nature 589, 120–124 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  167. 167.

    Ofir, G. et al. Antiviral activity of bacterial TIR domains via signaling molecules that trigger cell death. biorxiv https://www.biorxiv.org/content/10.1101/2021.01.06.425286v1 (2021).

  168. 168.

    Cohen, D. et al. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  169. 169.

    Kuzmenko, A. et al. DNA targeting and interference by a bacterial Argonaute nuclease. Nature 587, 632–637 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  170. 170.

    Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. 171.

    Pinilla-Redondo, R. et al. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements. Nat. Commun. 11, 5652 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. 172.

    Brugman, S. et al. A comparative review on microbiota manipulation: lessons from fish, plants, livestock, and human research. Front. Nutr. 5, 80 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  173. 173.

    Chan, B. K., Abedon, S. T. & Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 8, 769–783 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  174. 174.

    Rasmussen, T. S. et al. Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut 69, 2122–2130 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  175. 175.

    LeĂ³n, M. & BastĂ­as, R. Virulence reduction in bacteriophage resistant bacteria. Front. Microbiol. 6, 343 (2015).

    PubMed  PubMed Central  Google Scholar 

  176. 176.

    Friman, V.-P. et al. High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs. PLoS ONE 6, e17651 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  177. 177.

    Roach, D. R. et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22, 38–47 (2017).

    CAS  PubMed  Article  Google Scholar 

  178. 178.

    Meir, M. et al. Competition between social cheater viruses is driven by mechanistically different cheating strategies. Sci. Adv. 6, eabb7990 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. 179.

    Chevallereau, A. et al. Exploitation of the cooperative behaviors of anti-CRISPR phages. Cell Host Microbe 27, 189–198 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  180. 180.

    Medvedeva, S. et al. Virus-borne mini-CRISPR arrays are involved in interviral conflicts. Nat. Commun. 10, 5204 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  181. 181.

    Pausch, P. et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  182. 182.

    Hays, S. G. & Seed, K. D. Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite. eLife 9, e53200 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. 183.

    Wang, X. et al. Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotech. 37, 1513–1520 (2019).

    CAS  Article  Google Scholar 

  184. 184.

    Koskella, B. & Taylor, T. B. Multifaceted impacts of bacteriophages in the plant microbiome. Annu. Rev. Phytopathol. 56, 361–380 (2018).

    CAS  PubMed  Article  Google Scholar 

  185. 185.

    Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  186. 186.

    Green, S. I. et al. Targeting of mammalian glycans enhances phage predation in the gastrointestinal tract. mBio 12, e03474–20 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  187. 187.

    Mori, K., Kubo, T., Yuki, K., Okhuma, T. & Akira, K. Anti-vaccinia virus effect of M13 bacteriophage DNA. Antivir. Res. 31, 79–86 (1996).

    CAS  PubMed  Article  Google Scholar 

  188. 188.

    GĂ³rski, A. et al. Bacteriophages and transplantation tolerance. Transplant. Proc. 38, 331–333 (2006).

    PubMed  Article  Google Scholar 

  189. 189.

    GĂ³rski, A. et al. Bacteriophage translocation. FEMS Immunol. Med. Mic. 46, 313–319 (2006).

    Article  CAS  Google Scholar 

  190. 190.

    Jahn, M. T. et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe 26, 542–550 (2019).

    CAS  PubMed  Article  Google Scholar 

  191. 191.

    Verma, N. K., Brandt, J. M., Verma, D. J. & Lindberg, A. A. Molecular characterization of the O-acetyl transferase gene of converting bacteriophage SF6 that adds group antigen 6 to Shigella flexneri. Mol. Microbiol. 5, 71–75 (1991).

    CAS  PubMed  Article  Google Scholar 

  192. 192.

    Koonin, E. V., Makarova, K. S. & Wolf, Y. I. Evolutionary genomics of defense systems in archaea and bacteria. Annu. Rev. Microbiol. 71, 233–261 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  193. 193.

    Bull, J. J. et al. Phage-bacterial dynamics with spatial structure: self organization around phage sinks can promote increased cell densities. Antibiotics 7, 8 (2018).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  194. 194.

    Eriksen, R. S., Svenningsen, S. L., Sneppen, K. & Mitarai, N. A growing microcolony can survive and support persistent propagation of virulent phages. Proc. Natl Acad. Sci. USA 115, 337–342 (2018).

    CAS  PubMed  Article  Google Scholar 

  195. 195.

    Simmons, E. L. et al. Biofilm structure promotes coexistence of phage-resistant and phage-susceptible bacteria. mSystems 5, e00877–19 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  196. 196.

    Bull, J. J., Vegge, C. S., Schmerer, M., Chaudhry, W. N. & Levin, B. R. Phenotypic resistance and the dynamics of bacterial escape from phage control. PLoS ONE 9, e94690 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  197. 197.

    Bryan, D., El-Shibiny, A., Hobbs, Z., Porter, J. & Kutter, E. M. Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front. Microbiol. 7, 1391 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  198. 198.

    Aidley, J., Sørensen, M. C. H., Bayliss, C. D. & Brøndsted, L. Phage exposure causes dynamic shifts in the expression states of specific phase-variable genes of Campylobacter jejuni. Microbiology 163, 911–919 (2017).

    CAS  PubMed  Article  Google Scholar 

  199. 199.

    Høyland-Kroghsbo, N. M., Maerkedahl, R. B. & Svenningsen, S. L. A quorum-sensing-induced bacteriophage defense mechanism. mBio https://doi.org/10.1128/mBio.00362-12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Tan, D., Svenningsen, S. L. & Middelboe, M. Quorum sensing determines the choice of antiphage defense strategy in Vibrio anguillarum. mBio 6, e00627 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  201. 201.

    Manning, A. J. & Kuehn, M. J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 258 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  202. 202.

    Reyes-Robles, T. et al. Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J. Bacteriol. 200, e00792–17 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  203. 203.

    Bru, J.-L. et al. PQS produced by the Pseudomonas aeruginosa stress response repels swarms away from bacteriophage and antibiotics. J. Bacteriol. 201, e00383–19 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  204. 204.

    Pearl, S., Gabay, C., Kishony, R., Oppenheim, A. & Balaban, N. Q. Nongenetic individuality in the host–phage interaction. PLoS Biol. 6, e120 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

A.C. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkÅ‚odowska-Curie Actions (grant agreement no. 834052, anti-CRISPR). E.R.W. has received funding from the European Research Council (ERC-STG-2016-714478 — EVOIMMECH), the Leverhulme Trust (RPG-2018-380) and the UK Natural Environment Research Council (NE/M018350/1 and NE/S001921/1). S.v.H. has received funding from the UK Biotechnology and Biological Sciences Research Council (BB/S017674/1 and BB/R010781/10).

Author information

Affiliations

Authors

Contributions

A.C. and B.J.P. researched data for the article. A.C. and E.R.W. substantially contributed to discussion of the content. A.C. and B.J.P wrote the manuscript. E.R.W and S.V.H. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Anne Chevallereau or Edze R. Westra.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Peer review information

Nature Reviews Microbiology thanks B. Koskella and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mosaicism

The description of a phage genome as composed of gene blocks similar to other phage genomes and flanked by dissimilar sequences. This mosaic genome architecture is due to horizontal transfer of genetic material.

Lysogenic conversion

Phenotypic changes that result from the acquisition and expression of prophage-encoded genes.

Transduction

Transfer of bacterial DNA from one bacterium to another, mediated through phage infection.

Viral dark matter

A viral species (or genome) that has not yet been characterized but for which the existence has been revealed by environmental metagenomic sequencing. More restrictively, viral dark matter can also refer to phage genes that have no assigned functions.

Prophage

Latent form of a phage in which lytic functions are repressed and that is often integrated into the host chromosome.

Lysogeny

Phenomenon where a temperate phage parasitizes a host bacterium (hence called a ‘lysogen’), often by integrating its genetic material into the host DNA, but without producing phage particles or triggering host lysis.

Satellite phages

Phages that lack the ability to replicate autonomously and require the products of infection generated by a helper phage (for example, capsid proteins).

Superinfection

Infection of a host that already accommodates a phage from an earlier infection, which can be engaged either in a lytic or in a lysogenic cycle and integrated as a prophage.

Copiotroph species

Fast-growing organisms found in nutrient-rich environments.

Homoimmunity

Mechanism by which a prophage inhibits the secondary infection of its host by a closely related phage.

Viromes

Ensembles of viral genomes found in an organism or within a given environment.

Temperate phages

Phages that replicate either through a lytic cycle or through a lysogenic cycle.

Virulent phages

Phages that replicate exclusively through a lytic cycle, which ultimately triggers the death of the host cell, releasing new phage particles.

Phageome

Phage fraction of the virome. Phages are generally the main constituents of viromes.

Host range

The range of genetically distinct bacteria in which a phage can replicate. Usually, phages that infect a single or a few genetically close strains are referred to as ‘specialists’, whereas phages that infect many strains of the same species, or even multiple different species or genera, are called ‘generalists’.

Co-infection

Infection where two phages are simultaneously present within the same host cell. This definition therefore widely includes phenomena such as superinfection or polylysogeny.

Lysis inhibition

Delay of the lysis of an infecting phage (this extension of phage latent period results in an increased burst size) induced by secondary adsorptions of additional phages.

Auxiliary metabolic genes

(AMGs). Phage-encoded genes that originate from bacterial cells and can modulate host cell metabolism, likely resulting in improved phage replication.

Virocells

Refers to a concept stating that the reproductive, living form of a virus is the infected cell (called virocell) as opposed to its dissemination form, the virion.

Phase variation

Switch of gene expression from an ‘on’ phase to an ‘off’ phase, generally caused by the introduction of a mutation into a hypermutable DNA region. A secondary mutation in the same region can reactivate gene expression, rendering this phenomenon reversible. Phase variation generates phenotypic diversity in bacterial populations.

Phage-inducible chromosomal islands

Class of mobile genetic elements that specifically exploit (and interfere with) temperate phages for their horizontal transfer.

Fluctuating selection dynamics

Type of phage–bacterium coevolutionary dynamics where phage and host genotype frequencies oscillate over time because of negative frequency-dependent selection.

Arms race dynamics

Type of phage–bacterium coevolutionary dynamics where phage infectivity and host resistance generally increase over time.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chevallereau, A., Pons, B.J., van Houte, S. et al. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol (2021). https://ift.tt/3fJ6tx5

Download citation

Adblock test (Why?)



"between" - Google News
August 09, 2021 at 07:33PM
https://ift.tt/2VID7YA

Interactions between bacterial and phage communities in natural environments - Nature.com
"between" - Google News
https://ift.tt/2WkNqP8
https://ift.tt/2WkjZfX

Bagikan Berita Ini

0 Response to "Interactions between bacterial and phage communities in natural environments - Nature.com"

Post a Comment


Powered by Blogger.